mBLRZE=0DD

Tutorial

Tutorial 2: Object Orientated Programming!

Revision 1.0

Copyright © 2015
mCODE AS

IMCODE

mBuLRZE=3D Tutorial

Introduction

In this tutorial, we are going to have a look at the object oriented programming model of mBLAZE3D. We
are going to create a very simple program using some basic object oriented concepts like classes,
inheritance, data members, member functions, function overriding, and class instances (objects). This
tutorial is not really about teaching you object oriented programming. If you are new to this, google will
probably help you get started. If you are new to mBLAZE3D, reading Tutorial 1 first is recommended.
Don’t forget to have a look in the user manual as well!

Tutorial

Step 1

The first thing we have to do is to start up mBLAZE3D Studio, and set up a basic render target to be able
to draw something to screen. We do this by inserting the template ‘Set up Render Target’ from the
‘Setup’ document. Connect it to the start chip and open the small project view in the down, left corner of
the Studio. The view should be plain black, probably with some yellow debugging information rendered
on top, as seen in Figure 1. We are now going to change the background color of the view. Have a look in
the editor view and find the ‘Clear Color’ chip. This is a Vector holding four floating-point components,
in this case representing the red, green, blue and alpha color components in the range 0 to 1, used to
clear the back buffer. Open its property dialog, try changing the different values, and see how this affects
the color of the project view.

File Edit View Help
PEFD PP @ s uax PEOEIZ OO

Project Editor | Project Views
Chigs | Tempistes Sewch | Instances & pefauits B

Hame
m Camerss
» M Geometries
m Materials
" Mise
4 M Seap
2 Empry Scene

& Setup Render Target
o M Shaders

/

\
Graphics Co or Render Targ (Graphics Col
-
]

/
Clear Color 1 ectar
(0, 0,0, 1) 0.0, 1

Figurel Using thetemplate'Set up Render Target'.

Step 2

We are now going to take this one step further and get the clear color from a static functionin another
class The first thing we have to do is to create a new class! There are several ways to do this, for
example by right clicking the document called ‘Not Saved’ containing the Default class in the project tree
panel, and select ‘New Class...’, as seen in Figure 2. The nice thing about this method is that the new class
is added to the same document as the Default class. When saving the project, we only get one project
file instead of two.

mBuLRZE=3D Tutorial

Project Tree Project View

=

MName Type
4 3 Not Saved
4 |E| Mot Saved
2 Default |#] MewClass.. . Ctrl+Shift+N
g

H Save Ctrl+5

Save As...

X Delete Del

Rename...

Hide Documents

Figure2 Adding a new class to an existing document.

Okay, name the new class for Color and click OK in the dialog box. The new, empty class should now be
visible in the editor view. Let’s go ahead and add a few chips to it! Look in the list of chips and add one
Vector and four Value s. Connect the Value s as children to the Vector and name them ‘Red’, ‘Greer’,
‘Blue’ and ‘Alpha’, respectively. Open the Vector ’s property dialog, name the chip GetColor and make it
a static function, as illustrated in Figure 3. Making a chip a function, gives it the special property of being
remotely accessible by a function call As any programmer would know, a staticmemberfunctionis
called on the class itself, and does not need a class instance

m mBLAZE2ZD Studio BETA - Licensed = =

IR AR dd b s bEOE 2 00
FProject Editor Froject view

Crigs | Tompletes | Search | trmmnces

" GetColor Properties

Vectw | Chn | Commente
tame: | GetColor

Feefrusch Mo

™ onee

17 Orce ar Frame

181 Qe w Function Cal

PjectTiee Frowect Ve

Heme i Tiee
4 5 Mot Saved
4 [# NotSaved
Z Coler
Z Defauht

Figure3 Creating a static member function.

Go back to the Default class, find the ‘Clear Color’ chip, and remove it. Have a look in the project tree,
expand the Color class, and drag the GetColor function into the Default class, as seen in Figure 4. This
creates a Function Call targeting the static GetColor function of the Color class. Now, link it to where
the ‘Clear Color’ chip used to be connected, and open the project view. Switch back to the Color class
again and try modifying the Valu es connected to the GetColor function. Does changing the values
change the color of the project view? Cool, you’ve just learned how to call a static member function!
Note how a functionis just a property that can be given to (almost) any chip, while a funcdion callis
implemented as its own type of chip, namely the Function Call

mBuLRZE=3D Tutorial

123 Text Set

23 Textout

23 Texture

=2 Trigger

=2 UserInput

= Value

= Value Array

3 Value Container Element
3 Value Operator

123 Value Set

123 Vector v

ProjectTree | Project View

Name Type
4 & Mot Saved
4 [#] Not Saved
4 & Color
9 GetColor ———vextor
& Default

Graphics Command: Clear Ren

Back Buffer

Figure4 Adding a Enction Call.

Step 3

As mentioned, a static function does not require a class instance. Looking at the function call, we notice
that it does not have any child connectors. We are now going to change the function from being static to
virtual. A virtual function, like a non-virtual function, requires a class instance when being called. Unlike a
non-virtual function though, a virtual function can be overriddenin derivedclasses. More on that later!
Changing the function type is very simple; just go to the function’s property dialog and select ‘Virtual’
instead of ‘Static’ in the function configuration, as indicated in Figure 5. The color of the chip will also
change to indicate the function type!

Vector | Chip | Comments

Name: |GetColor
Refresh Mode
O Onee Reset
() Once pr Frame
(®) Once pr Function Call
O Always
Function
Type Access
() No function @ Public
() Protected
() Nonwirtual
® vrtual Private
ME|
Name Type
[o [concel [[sooy |

Figure5 Changing to a virtual funion.

Have a look at the function call again. A child connector has appeared! This is where we are going to
connect the class instancér which we are going to call the function upon! Go to the list of chips, find
an Instance Ref chip, drag it into the Default class, and connect it to the function call as illustrated in
Figure 6.

mBuLRZE=3D Tutorial

Chips | Templates | Search | Instances & cdor= [0 | 2 pefauit- B

Name &

120 Graphics States
=3 Graphics Value

120 Graphics Vector

=3 If/Else

20 Inertia

3 Instance Data

0 Instance Ref

3 Instance Ref Arr3

20 Instance Ref by Ted Map

3 Instance Ref by Value Map

20 Instance Ref Container Element
3 Instance THIS

20 Mapped Resource

Project Tree | Project View &

— Instamee Ref
Name Type
4 B3 Not Saved
4 (7] Not Saved
4 & Color

= GetColor Vector
& Default

Back Buffer

Figure6 Addingand connection an Instance Ref chip.

We just created a class instance referencebut we did not assign any instanceto it! This is just like a null
pointerin C++, except that the program does not crash when we try calling a function upon it! Just try!
Open reference’s property dialog, and create a new instance of the Color type, as seen in Figure 7. Open
the project view again and confirm it still work as it did using a static function. You can still change the
color components in the Color class. Try adding a second Instance Ref , assign it a new Color instance
and link it to the function call, discarding the old link. It will give the same color as the other instance,
right? Wouldn’t it be nice if we could make the two instances return different colors? Yes, that’s exactly
what object orientation is about, and to achieve this we need to add some instance datao our Color
class!

Instance Ref Properties

Ref Chip Comments
EERL-Y Owner [¥] Save Instance

Back Buffer

& -
f:b

nstance Ref
Hide _prefixed Data Members [Preload target

ok | cancd || apply |

Figure7 Creating a new 'Color' instance.

Step 4

All chips you can see in a class are in fact static data membersf the class. This means that they are
common to all instances of the class, just as we realized in the previous step. To create data, or chips,
that are unique to each instance, we need to use the Instance Data chip. We want to make the
Value s (Red, Green, Blue and Alpha) in the Color class, data members of each instance we create. To do
so, we can just convert them to Instance Data s by right clicking each chip, then select ‘Convert to
Instance Data’, as illustrated in Figure 8. Note that the state the chip currently have when converting, will
be the default state for each new instance of the chip. In our case, the state is the floating-point value

mBuLRZE=3D Tutorial

each chip hold. If we want each new instance of Color to give a green color by default, we should make
sure the Red, Green and Blue chips hold the values 0.0, 1.0 and 0.0 respectively when converting them.
Of course, we could change this later using the Instance Data ’s property dialog!

& color=[@ | & pefauit* [

\\
1 Chip Properties...
= =

- Comments..

Convert to * |0 Instance Data I

=9 Function Data

Z3 Copy Culoc | ™ Function Call

X Delete Del B Parameter
[Proxy Chip

Arrange Children &5 | Standard Chip

Figure8 Converting chips to Instance Dataps.

Now, go back to the Default class and open the property dialog for the two Instance Ref chips you
created earlier. Note how each instance now has four members in the data member table as highlighted
in Figure 9. Their values should be equal to the default settings present when we converted the chips.
Try giving each instance a unique color by changing the values in the table, then open the project view.
Its color should reflect the setting in the instance currently linked to the function call. Now, link the other
instance instead! Did the color of the project view change? Yes? Good! Each instance’s data is accessed
through the respective Instance Data chips in the Color class. These chips will return the data from
the instance the function was called upon.

oot (]| & et @

[—

10 (el [Gal i

5 irstance Ref by Vahue Map

0 Iestance Fief Cortainer Eement

2 enbans THS

=2 Mapped Resoure -

| ProjectTree | Fmpect v

606 (D30 _FEATURE LEVEL 11

[+ side _preftacd Datn Merers

Figure9 The datamembertable of a Color instance

mBuLRZE=3D Tutorial

Step 5

We are now going to have a look at inheritance This is a key concept in object-oriented programming,
and just as C++, mBLAZE3D supports multipleinheritance! Inheritance is when a class is basedon, or
inherits another class to reuse and extend its functionality.

Let’s begin by creating a new class. You have already learned how to do this! Call the new class for
ScaledColor, add it a Value chip named ScaleFactor, set it to 1.0 and convert it to an Instance Data

We are now going to let the new class inherit the Color class. To do this we have to open the Class
Diagramfrom the toolbar or the main menu. This blue workspace contains all classes in our project. Each
chip represent a class, and their child connections represent base classeshe classes they inherit or
extend. We are going to let ScaledColor inherit the Color class. Do this by dragging a new link from the
ScaledColor’s child connector to the top connector of Color, as illustrated in Figure 10. You are free to
arrange the chips as you like to get a clean and organized class diagram. Those familiar with UML class
diagramswill notice that the class diagram of mBLAZE3D is upside down!

Proeciidtr Project View

s | Templstes | Seardh | Instances ok CossDagam B | & Semledtoor* £ | & Color* B | & Defauit* 0

Harme
153 Skeleton Corroller Command
=3 Searndard Drawable

3 Switch

2 Tet

=3 st Uperatar

3 Tt St

£ Testout

9 Testure

=3 Trgger

9 Userinput

= Value

12 Velue Ay

.
£3 Value Container Blement v
FrojectTrae | Project ew

Harne ’ Type
« 3 Nt Saved
4 [[#] NotSaved
4 & Coler
= GetCaler Vector
S Defsult
& Scal=dCelor

SealedCalar

0=

Color

FigurelO The class diagramf mBLAZE3xaledColor inheritthe Colorclass!

By inheritance, the ScaledColor class is now also a type ofa Color class. Any function that accept a Color
instance will also accept a ScaledColor instance, a concept known as type polymorphismGo ahead and
add a new Instance Ref to the Default class, and create a new instance of ScaledColor. You will notice
that the data table contain the four data members of the Color class in addition to the ScaleFactor
member we added to ScaledColor, as seen in Figure 11. Give it some random color and link the

Instance Ref chip to the function call. Open the project view and confirm it work exactly as for the
Color instances! If we did not let ScaledColor inherit Color, an error message would be generated
instead. So far, we have not really added any new functionality to the new class, and the ScaledColor
member is not used at all. That’s what we are going to do something about now!

mBuLRZE=3D Tutorial

FrojectEslor | Praject iew |
chps | Templstes | Sesch | dnstences Z Comegran (0 | & scedzckee (| & coeee | S petans @ |

Hame “ A
= Generic Drawable

=3 Graphics Command

5 Grzphics Merrix -
20 Graphics Rates InstarceRef | Cup | Commerss
= Graphecs Value

E Ly ¥ owwer [¥] save Instance
= Graphies Vacter Back Bulfer
S Type: | SealedCalor
= nestia

ey m: 1
=5 Instance Data

= Inszance Ref Type

= InstanceRef furay

=3 Inssance Ref by Text Map.
= Instance Ref by Vshue Map ~ 2 Colorshlgha

RS m Instance Ref Properties

1 ScalesColorSealeFarmor value

Value

3 ColorBlue Value
| Froecimes | Project Ve

NVIDIA GeForce GTX 460M (D3D_FEATURE_LEVEL 11

4 ColorsGreen Value
ﬁ w = _

Figurell A Scaleolor instance also contains data members from the Color class.

Step 6

The last concept we are going to look at is function overriding As we saw in the previous step, calling
GetColor of Color on a ScaledColor instance worked just like earlier. Remember we made this a virtual
function, one that can be overriddenin a deriving class. This means that if we create an identical function
in our ScaledColor class, this function will be called instead of Color’s version of the function when we
pass our function call an instance of ScaledColor. That is even if the function call is targeting Color’s
version of the function! That is called function overridingand we are going to give it a try now!

We are now going to override Color’s GetColor function in our ScaledColor class. The easiest way to do
this is to just copy the function (select it, then press Ctrl+C), and then paste it (Ctrl+V) in the ScaledColor
class, as illustrated in Figure 12. That’s it! Linking a ScaledColor instance to the function call in our
Default class will no longer call GetColor in the Color class because it is overridden; the function in
ScaledColor is called instead! If you link back one of the Color instances again, the original function is of
course again called. This is an important point, because it means that inheriting a class does not change
or break the existing behavior of the base class or its instances!

| & ClassDiagram [| & scaledcolor [| & color=) Defauit= [| [& Goss Dicgram [& Scaledcobor= £

£ Coor=[1) | & Defeut= [|

Chip Properties...
| Comments...

Set as Start Chip

Convert to

' Delete Del
ﬁ Arrange Children

ScaleFactor

Figurel2 Overriding a function by copy and paste.

mBuLRZE=3D Tutorial

Still, we have not added any functionality to the function in ScaledColor. We want this function to return
the color got from Color’s GetColor function multiplied by our ScaleFactor. The first thing we have to do
is to call GetColor of the Color class to get the original color. The easiest way to do this is to find Color’s
GetColor function in the project view and drag it into the ScaledColor class while holding down the Shift
key. This will create a function call, set to be ‘called by nane Like for a static function call, it does not
have a child connector for an instance, but it will implicitly use the instance we are currently working on,
calling the exact function it is targeting, ignoring overriding. Now, insert a VectorOperator to the
class, and select it to ‘Multiply Vectors’. Link the newly added function call to the first child connector,
and a new Vector to the other. Take the ScaleFactor chip and link it to all four child-connectors of the
Vector . This implements the scaling operation we want.

The last step is linking the logic to the function. Since the function is a standard Vector , this is not
possible without decomposing the result from the VectorOperator in to its individual components
using four ValueOperator s set to ‘Get Vector X/Y/Z/W’, then linking those to each child connector of
the function. A more elegant and efficient way is to convert the function into a Proxy chip as illustrated
in Figure 13. A Proxy is just a dummy, a powerful such, forwarding whatever is connected to its child
connector, in our case the VectorOperator , to anyone who calls the function. As a side note, the
Proxy is the base for many other powerful chips like the Instance Data !

Chip Properties...
© Comments.
Set as Start Chip

Convert to =) Instance Data
E3 Function Data
®8 Function Call

Standard Chip

Cut

3 Copy
Delete

Multipheefors

0,00 1)

Arrange Children

Vector Vector

0,00 1) (0,0,0,1)

Figurel3 Converting the functioto a Proxy chip.

Finally, open the project view again with the ScaledColor instance connected to our function call in the
Default class. Like Figure 14 illustrates, try changing the instance’s ScaleFactor member and see what
happens. The intensity of the color in the project view should change!

mBuLRZE=3D Tutorial

PropctEdte | Progect vem

chos | mpana | searmn | mesncs 5 Combagron £ | 2 Sosedcoior 0 | & Coor® @) | & Demie @

Hame : >
=2 vk Amay

=3 Valuz Container Element

23 Value Cperstor

= Vakue Set

o Veckar

*|[5] 2 Oprer] Save Instee
=3 Vector Amay ack Buffer = il B “
9 Vector Amey Element
4 Vector Cpesatar : 0
L4 XML Commend — _ . —

23 XML Hement
=3 XML Tt

<3 WML Value
= APIM Miatrix - 2 Color:

m Instance Ref Froperties - - IEN

Imtarws el | chip | Comments

3 ColorzBiue

Prapit Tew | Propect Vew

4 ColarzGreen

3 ColrzRed

[#ade _orafyed Data Marbers

Figurel4 ScaledColor uses the ScaleFactor to chémgmtensity of the olor.

That’s it! You have now learned the very basic of object-oriented programming in mBLAZE3D. In this
tutorial you have learned how to

- create new classes.

- create static and nonstatic member functions.

- call functions.

- create instance data.

- create instances and modify their local data members.

- use the class diagram to implement inheritance.

- override functions and call overridden base class functions.

There are still a lot more to learn about this, like how to use function parameters, data structures (like
Instance Ref Array s), multiple inheritance, access modificators and so on. Have a go and see what
you can figure out by yourself, using this tutorial as a starting point!

Enjoy!

10

