

Tutorial
Tutorial 2: Object Orientated Programming!

Revision 1.0

Copyright © 2015

mCODE AS

 Tutorial

2

Introduction
In this tutorial, we are going to have a look at the object oriented programming model of mBLAZE3D. We

are going to create a very simple program using some basic object oriented concepts like classes,

inheritance, data members, member functions, function overriding, and class instances (objects). This

tutorial is not really about teaching you object oriented programming. If you are new to this, google will

probably help you get started. If you are new to mBLAZE3D, reading Tutorial 1 first is recommended.

Don’t forget to have a look in the user manual as well!

Tutorial

Step 1
The first thing we have to do is to start up mBLAZE3D Studio, and set up a basic render target to be able

to draw something to screen. We do this by inserting the template ‘Set up Render Target’ from the

‘Setup’ document. Connect it to the start chip and open the small project view in the down, left corner of

the Studio. The view should be plain black, probably with some yellow debugging information rendered

on top, as seen in Figure 1. We are now going to change the background color of the view. Have a look in

the editor view and find the ‘Clear Color’ chip. This is a Vector holding four floating-point components,

in this case representing the red, green, blue and alpha color components in the range 0 to 1, used to

clear the back buffer. Open its property dialog, try changing the different values, and see how this affects

the color of the project view.

Figure 1 Using the template 'Set up Render Target'.

Step 2
We are now going to take this one step further and get the clear color from a static function in another

class. The first thing we have to do is to create a new class! There are several ways to do this, for

example by right clicking the document called ‘Not Saved’ containing the Default class in the project tree

panel, and select ‘New Class…’, as seen in Figure 2. The nice thing about this method is that the new class

is added to the same document as the Default class. When saving the project, we only get one project

file instead of two.

 Tutorial

3

Figure 2 Adding a new class to an existing document.

Okay, name the new class for Color and click OK in the dialog box. The new, empty class should now be

visible in the editor view. Let’s go ahead and add a few chips to it! Look in the list of chips and add one

Vector and four Value s. Connect the Value s as children to the Vector and name them ‘Red’, ‘Green’,

‘Blue’ and ‘Alpha’, respectively. Open the Vector ’s property dialog, name the chip GetColor and make it

a static function, as illustrated in Figure 3. Making a chip a function, gives it the special property of being

remotely accessible by a function call. As any programmer would know, a static member function is

called on the class itself, and does not need a class instance.

Figure 3 Creating a static member function.

Go back to the Default class, find the ‘Clear Color’ chip, and remove it. Have a look in the project tree,

expand the Color class, and drag the GetColor function into the Default class, as seen in Figure 4. This

creates a Function Call targeting the static GetColor function of the Color class. Now, link it to where

the ‘Clear Color’ chip used to be connected, and open the project view. Switch back to the Color class

again and try modifying the Valu es connected to the GetColor function. Does changing the values

change the color of the project view? Cool, you’ve just learned how to call a static member function!

Note how a function is just a property that can be given to (almost) any chip, while a function call is

implemented as its own type of chip, namely the Function Call .

 Tutorial

4

Figure 4 Adding a Function Call.

Step 3
As mentioned, a static function does not require a class instance. Looking at the function call, we notice

that it does not have any child connectors. We are now going to change the function from being static to

virtual. A virtual function, like a non-virtual function, requires a class instance when being called. Unlike a

non-virtual function though, a virtual function can be overridden in derived classes. More on that later!

Changing the function type is very simple; just go to the function’s property dialog and select ‘Virtual’

instead of ‘Static’ in the function configuration, as indicated in Figure 5. The color of the chip will also

change to indicate the function type!

Figure 5 Changing to a virtual function.

Have a look at the function call again. A child connector has appeared! This is where we are going to

connect the class instance for which we are going to call the function upon! Go to the list of chips, find

an Instance Ref chip, drag it into the Default class, and connect it to the function call as illustrated in

Figure 6.

 Tutorial

5

Figure 6 Adding and connection an Instance Ref chip.

We just created a class instance reference, but we did not assign any instance to it! This is just like a null

pointer in C++, except that the program does not crash when we try calling a function upon it! Just try!

Open reference’s property dialog, and create a new instance of the Color type, as seen in Figure 7. Open

the project view again and confirm it still work as it did using a static function. You can still change the

color components in the Color class. Try adding a second Instance Ref , assign it a new Color instance

and link it to the function call, discarding the old link. It will give the same color as the other instance,

right? Wouldn’t it be nice if we could make the two instances return different colors? Yes, that’s exactly

what object orientation is about, and to achieve this we need to add some instance data to our Color

class!

Figure 7 Creating a new 'Color' instance.

Step 4
All chips you can see in a class are in fact static data members of the class. This means that they are

common to all instances of the class, just as we realized in the previous step. To create data, or chips,

that are unique to each instance, we need to use the Instance Data chip. We want to make the

Value s (Red, Green, Blue and Alpha) in the Color class, data members of each instance we create. To do

so, we can just convert them to Instance Data s by right clicking each chip, then select ‘Convert to

Instance Data’, as illustrated in Figure 8. Note that the state the chip currently have when converting, will

be the default state for each new instance of the chip. In our case, the state is the floating-point value

 Tutorial

6

each chip hold. If we want each new instance of Color to give a green color by default, we should make

sure the Red, Green and Blue chips hold the values 0.0, 1.0 and 0.0 respectively when converting them.

Of course, we could change this later using the Instance Data ’s property dialog!

Figure 8 Converting chips to Instance Data chips.

Now, go back to the Default class and open the property dialog for the two Instance Ref chips you

created earlier. Note how each instance now has four members in the data member table as highlighted

in Figure 9. Their values should be equal to the default settings present when we converted the chips.

Try giving each instance a unique color by changing the values in the table, then open the project view.

Its color should reflect the setting in the instance currently linked to the function call. Now, link the other

instance instead! Did the color of the project view change? Yes? Good! Each instance’s data is accessed

through the respective Instance Data chips in the Color class. These chips will return the data from

the instance the function was called upon.

Figure 9 The data member table of a Color instance.

 Tutorial

7

Step 5
We are now going to have a look at inheritance! This is a key concept in object-oriented programming,

and just as C++, mBLAZE3D supports multiple inheritance! Inheritance is when a class is based on, or

inherits, another class to reuse and extend its functionality.

Let’s begin by creating a new class. You have already learned how to do this! Call the new class for

ScaledColor, add it a Value chip named ScaleFactor, set it to 1.0 and convert it to an Instance Data .

We are now going to let the new class inherit the Color class. To do this we have to open the Class

Diagram from the toolbar or the main menu. This blue workspace contains all classes in our project. Each

chip represent a class, and their child connections represent base classes; the classes they inherit or

extend. We are going to let ScaledColor inherit the Color class. Do this by dragging a new link from the

ScaledColor’s child connector to the top connector of Color, as illustrated in Figure 10. You are free to

arrange the chips as you like to get a clean and organized class diagram. Those familiar with UML class

diagrams will notice that the class diagram of mBLAZE3D is upside down!

Figure 10 The class diagram of mBLAZE3D. ScaledColor inherits the Color class!

By inheritance, the ScaledColor class is now also a type of a Color class. Any function that accept a Color

instance will also accept a ScaledColor instance, a concept known as type polymorphism. Go ahead and

add a new Instance Ref to the Default class, and create a new instance of ScaledColor. You will notice

that the data table contain the four data members of the Color class in addition to the ScaleFactor

member we added to ScaledColor, as seen in Figure 11. Give it some random color and link the

Instance Ref chip to the function call. Open the project view and confirm it work exactly as for the

Color instances! If we did not let ScaledColor inherit Color, an error message would be generated

instead. So far, we have not really added any new functionality to the new class, and the ScaledColor

member is not used at all. That’s what we are going to do something about now!

 Tutorial

8

Figure 11 A ScaledColor instance also contains data members from the Color class.

Step 6
The last concept we are going to look at is function overriding. As we saw in the previous step, calling

GetColor of Color on a ScaledColor instance worked just like earlier. Remember we made this a virtual

function, one that can be overridden in a deriving class. This means that if we create an identical function

in our ScaledColor class, this function will be called instead of Color’s version of the function when we

pass our function call an instance of ScaledColor. That is even if the function call is targeting Color’s

version of the function! That is called function overriding, and we are going to give it a try now!

We are now going to override Color’s GetColor function in our ScaledColor class. The easiest way to do

this is to just copy the function (select it, then press Ctrl+C), and then paste it (Ctrl+V) in the ScaledColor

class, as illustrated in Figure 12. That’s it! Linking a ScaledColor instance to the function call in our

Default class will no longer call GetColor in the Color class because it is overridden; the function in

ScaledColor is called instead! If you link back one of the Color instances again, the original function is of

course again called. This is an important point, because it means that inheriting a class does not change

or break the existing behavior of the base class or its instances!

Figure 12 Overriding a function by copy and paste.

 Tutorial

9

Still, we have not added any functionality to the function in ScaledColor. We want this function to return

the color got from Color’s GetColor function multiplied by our ScaleFactor. The first thing we have to do

is to call GetColor of the Color class to get the original color. The easiest way to do this is to find Color’s

GetColor function in the project view and drag it into the ScaledColor class while holding down the Shift

key. This will create a function call, set to be ‘called by name’. Like for a static function call, it does not

have a child connector for an instance, but it will implicitly use the instance we are currently working on,

calling the exact function it is targeting, ignoring overriding. Now, insert a VectorOperator to the

class, and select it to ‘Multiply Vectors’. Link the newly added function call to the first child connector,

and a new Vector to the other. Take the ScaleFactor chip and link it to all four child-connectors of the

Vector . This implements the scaling operation we want.

The last step is linking the logic to the function. Since the function is a standard Vector , this is not

possible without decomposing the result from the VectorOperator in to its individual components

using four ValueOperator s set to ‘Get Vector X/Y/Z/W’, then linking those to each child connector of

the function. A more elegant and efficient way is to convert the function into a Proxy chip as illustrated

in Figure 13. A Proxy is just a dummy, a powerful such, forwarding whatever is connected to its child

connector, in our case the VectorOperator , to anyone who calls the function. As a side note, the

Proxy is the base for many other powerful chips like the Instance Data !

Figure 13 Converting the function to a Proxy chip.

Finally, open the project view again with the ScaledColor instance connected to our function call in the

Default class. Like Figure 14 illustrates, try changing the instance’s ScaleFactor member and see what

happens. The intensity of the color in the project view should change!

 Tutorial

10

Figure 14 ScaledColor uses the ScaleFactor to change the intensity of the color.

That’s it! You have now learned the very basic of object-oriented programming in mBLAZE3D. In this

tutorial you have learned how to

- create new classes.

- create static and nonstatic member functions.

- call functions.

- create instance data.

- create instances and modify their local data members.

- use the class diagram to implement inheritance.

- override functions and call overridden base class functions.

There are still a lot more to learn about this, like how to use function parameters, data structures (like

Instance Ref Array s), multiple inheritance, access modificators and so on. Have a go and see what

you can figure out by yourself, using this tutorial as a starting point!

Enjoy!

